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FOREWORD

This report was prepared by North American Aviation, Inc., Space
Division, under NASA Contract NAS9-4552, for the National Aeronautics and
Space Administration, Manned Space Flight Center, Houston, Texas, with
Dr. F.C. Hung, Program Manager and Mr. P.P. Radkowski, Assistant
Program Manager. This work was administered under the direction of
Structural Mechanics Division, MSC, Houston, Texas with Dr. F. Stebbins
as the technical monitor,

This report is presented in eleven volumes for convenience in handling
and distribution., All volumes are unclassified,

The objective of the study was to develop methods and Fortran IV
computer programs to determine by the techniques described below, the
hydro-elastic response of representation of the structure of the Apollo Com-
mand Module immediately following impact on the water., The development
of theory, methods and computer programs is presented as Task I Hydro-
dynamic Pressures, Task Il Structural Response and Task III Hydroelastic
Response Analysis.

Under Task I - Computing program to extend flexible sphere using the
Spencer and Shiffman approach has been developed. Analytical formulation
by Dr., Li using nonlinear hydrodynamic theory on structural portion is
formulated. In order to cover a wide range of impact conditions, future
extensions are necessary in the following items:

a. Using linear hydrodynamic theory to include horizontal velocity
and rotation,

b. Nonlinear hydrodynamic theory to develop computing program on
spherical portion and to develop nonlinear theory on toroidal and
conic sections., '

Under Task II - Computing program and User's Manual were developed
for nonsymmetrical loading on unsymmetrical elastic shells. To fully
develop the theory and methods to cover realistic Apollo configuration the
following extensions are recommended:

a, Modes of vibration and modal analysis,

b. Extension to nonsymmetric short time impulses.
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c. Linear buckling and elasto-plastic analysis

These technical extensions will not only be useful for Apollo and
future Apollo growth configurations, but they will also be of value to other
aeronautical and spacecraft programs,

The hydroelastic response of the flexible shell is obtained by the
numerical solution of the combined hydrodynamic and shell equations. The
results obtained herein are compared numerically with those derived by
neglecting the interaction and applying rigid body pressures to the same
elastic shell. The numerical results show that for an axially symmetric
impact of the particular shell studied, the interaction between the shell and
the fluid produces appreciable differences in the overall acceleration of the
center of gravity of the shell, and in the distribution of the pressures and
responses, However the maximum responses are within 15% of those pro-
duced when the interaction between the fluid and the shell is neglected. A
brief summary of results is shown in the abstracts of individual volumes.

The volume number and authors are listed on the following page.

The contractor's designation for this report is SID 67-498,
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ABSTRACT

A general method is developed for predicting the
response of thin elastic shells of revolution subjected
to arbitrary time-dependent loads, The method solves
the dynamic shell equations by means of a definite-
difference formulation in both space and time., As an
application of the general numerical method, the res-
ponse of blunt shells of revolution during a vertical
impact into an incompressible fluid is studied. A
formula is derived for the pressures on a rigid body
of revolution during vertical impact, Itis shown that
the pressures are minimum at the impact point, and
very large near the edge of the wetted surface of the
body. These pressures are applied as a forcing
function to a shell representing a typical re-entry
vehicle, The numerical results show that the res-
ponse is largest at the impact point, and the the
interaction of the flexible structure and the fluid
may have an effect on the pressure distributions.
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NOMENCLATURE
Pressure Profiles
p bressure
p mass density
¢ velocity potential
Vo initial rigid-body velocity
v rigid-body velocity
A rigid-body acceleration
M total mass of shell
m virtual mass of fluid
3 meridional shell coordinate
EF value of £ at edge of wetted surface
R radius of curvature at impact point
R(E) radius of curvature at &
C maximum radius of wetted shell surface
b depth of penetration }
r polar distance from impact point ‘
x vertical coordinate i
t time
g acceleration due to gravity
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Shell Analysis

NE, Ng, Ngg

Mg, Me, Mge

Ug, Vg, W
qgr qe: q

t

T

3

mg

EO

h

ho

%o

o), ol ofn)
i), mfp), o
u(n) u(n), w(n)

reference length
meridional coordinate
circumferential coordinate
membrane forces

bending moments

modified membrane shear and twisting moment

meridional, circumferential, and normal
displacements

external loads per unit area

time variable

dimensionless time variable
dimensionless meridional coordinate
mass density

reference Young's modulus

shell thickness

reference shell thickness

reference stress level

Fourier coefficients of membrane forces
Fourier coefficients of bending moments
Fourier coefficients of displacements
Fourier coefficients for loads

Fourier component
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. d( )/d=

' d( )/dg

h h/hg

J index denoting discrete time increment

€ dimensionless time increment

i index denoting shell station point

ya\ dimensionless meridional spatial increment

N number of spatial stations

z solution column matrix

2§, 0 ;i, 0> =z'_-1, 0 Fourier coefficient matrices of initial conditions

Other symbols are defined as they appear in the text, or are fully
defined in Reference 2.



INTRODUCTION

The design of elastic structures which impact into fluids requires a
knowledge of the manner in which the structure responds to the impact
forces, and a determination of the impact forces themselves. The purpose
of this report is two-fold: first, to provide a means of calculating the pres-
sure profiles which act on a shell of revolution during fluid impact, and
second, to present a numerical method for the determination of the dynamic
response of elastic shells of revolution subjected to arbitrary time-varying
load distributions. The calculation of pressure profiles is restricted to
those occurring during a vertical impact at a point on the shell where the
rate of change of curvature is small in the neighborhood of the impact. The
calculation of dynamic response, however, is quite general, and can be
applied to any thin elastic shells of revolution within the framework of linear
first-order shell theory.

The dynamic analysis of the elastic shell is based on Sanders' shell
theoryl, and involves an extension of the numerical procedure developed by
Budiansky and Radkowski for the static analysis of shellsz. An implicit
numerical method of timewise integration is used in the solution of the
dynamic problem. This implicit method was first used successfully by
Houbolt in studying the response of aircraft to gust loads>.n The Houbolt
method was recently employed by Johnson and Greif in determining the
dynamic response of a cylindrical shell4., The method presented here is a
generalization of that used and suggested in Reference 4.

The Houbolt method features the use of backward difference expressions
to represent the inertia terms in the dynamic shell equations. As shown by
Johnson®, the method is numerically stable and thus offers an advantage
over various other possible finite-difference methods. The finite-difference
time increment, however, must be selected small enough to guarantee
accurate results®. The spatial solution to the shell equations follows the
procedure developed in Reference 4, and involves the expansion of the
dependent variables in Fourier series, with the subsequent representation of
the spatial derivatives in finite-difference form. A direct matrix elimination
technique (Potters' method7) is used to solve the set of algebraic equations
resulting from the finite-difference approximations to the reduced shell
differential equations of motion.

The study of the impact of structures into fluids finds application in
the problems associated with the slamming of ships in heavy seas, the water




entry of torpedoes, and the water landing of spacecraft. Surveys of the
literature concerned with slamming and water impact have been made by
Chu and Abramson® and by Szebehely and Ochi’. In'the present problem,
the maximum overall forces occur during a period when the motion of the
fluidTabout the shell is adequately described by incompressible potential
flow ',

The classical papers of von Karmanl!l and Wagnerlz have established
methods of treating the two-dimensional impact of rigid V-wedges into an
incompressible fluid. They showed how the concept of the virtual mass of
the fluid could be used to advantage, and determined the pressures on rigid
wedges by applying the known steady-state solutions for the flow about a flat
plate to the unsteady hydrodynamic problem. The techniques developed for
wedges also apply to the study of bodies of revolution. The impact of conical
bodies has been investigated by Shiffman and Spencer13, who also gave the
solution for the potential associated with the flow about a penetrating sphere
Their solution for the sphere has been used by Korkegi15 to predict the pres-
sure history for an impacting sphere by considering the flow about a circular
disc.

In this report, a modification of Korkegi's analysis is made for a rigid
sphere. The pressures derived from this modification are applied as a
forcing function to a shell of revolution. Numerical results are presented for
the dynamic response of a shallow spherical shell during water impact. The
shell structure is considered to be clamped below a heavier rigid mass
(Figure 1) so that their combined mass simulates a typical re-entry vehicle.
In this study, the effects of the hydroelastic interaction between the flexible
shell and the fluid have been neglected. The forcing function is defined on
the basis of a rigid-body analysis, and the response of the shell to this
forcing function is studied. It is intended that these results will make
possible an evaluation of the effect on the hydroelastic interaction which will
form the subject-matter of Volume .3 of this report.

TIn the present problem, the maximum forces are found to occur within the
milli-second range. The effects of compressibility and air bubbles appear
to predominate only in the microsecond range and are therefore neglected in
this paper. These effects are discussed by Chuang10 in connection with the
impact of flat plates.
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PRESSURE PROFILES

According to incompressible potential theory, the flow of fluid around
the shell is defined by a velocity potential ¢ which satisfies Laplace's
equation (see, for instance, Reference 16). The pressure in the fluid is
related to ¢ through Bernoulli's equation

~—

1
p=p| - (vd® +gx (1

The fluid is displaced by the penetrating shell, and a thin sheath of fluid
envelops the shell, as shown in Figure 1, where the free surface of the
resulting splash is denoted by F,,. On this free surface the pressure must
be equal to the ambient pressure. Following Shiffman and Spencerl4, it
will be assumed that the second term in Bernoulli's equation is small com-
pared with the first, which means that the effect of the spray root is
neglected, and the free surface remains plane during impact. The resulting

planar surface is denoted in Figure 1 by Fp. It follows from Equation (1)
that

¢=Ooan (2)

During the impact, the penetrating vehicle imparts some of its
momentum to a virtual mass of fluid adjacent to it. To determine the
magnitude of this virtual mass, the wetted surface of the penetrating shell is

replaced by a flat disc of radius c. Consequently, the virtual mass m of the
fluid is T

pc3 (3)

m =

WIS

The radius c of the wetted surface is related to the curvature of the shell
R(£), and to the depth of penetration b. If b/R <<1, then

2b = R - R(&F)2< 1 - sin? §F>/R (4)

TThe virtual mass used here is half that given in Reference 16, p. 144,
because only half of the disc is in contact with the fluid.



For a shell whose change in curvature is small in the neighborhood of the
impact point,

R(Ep) ~ R (5)

so that, approximately,

c = (ZbR)l/Z (6)

According to the principle of conservation of momentum, the instan-
taneous velocity V of the center of gravity of the vehicle is

db -
V=E=Vo(l+m/M)l (7)

The distances ¢ and b are approximated by%**

b

Vot
(8)

(]
1

1/2
(2R V t)

Thus, the acceleration A of the center of gravity is given by
3/2 1/2 -
A=-<4,/2pvg/2R/ t//M> (1+v)2 (9)

where
v =8/2p (RV,1)>3/%/3Mm

The time at which the accelerationis a maximum is

1 < 3M >2/3
= 10
t RVo \40,/2 p (10}

‘The velocity potential on the surface of the disc at any time is given by

(Reference 16, p. 144)
1/2
2ev(i-2) o
*=7c "2

C

*%Actually the depth of penetration may be obtained from Equation (7) in the
parametric form

b [ 1+ léﬁ—p(Rb)3/2/15M] = Vot
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" The pressure on the surface of the disc (at x = 0) is found from Equation (1)
to be

V2 o v3/2 R1/2 Il -Y (2 - 3r2/cz)]

1/2
rtl/2 (1 - £2/c?) / (1+Y)2

P

(12)
2 -1

PVS . 4 r2 . r2
1+ -—
2(1+Y)2 2 .2 S 2
The second term on the right-hand side of Equation (12) arises from the
retention of the term > p (V®)“ in Bernoulli's Equation (1).

In order to illustrate some typical numerical results, a study was made
of the impact of a sphere of radius 175 inches and weight 10000 1bs. into
water of density (62.5 lbs. /cu. ft. In Figure 2 is shown the acceleration
history of the center of gravity for various initial impact velocities. The
maximum acceleration for Vg, = 30 fps. occurs att = 9.5 milliseconds after
impact. In Figure 3, pressure profiles are presented for an initial impact
velocity of 30 fps. They are calculated from Equation (12) while ignoring the
second term on the right-hand side.

The pressures are minimum at the point of initial impact, and increase
to an infinite peak at the edge of the wetted surface. If the second term in
Equation (12) were to be retained, its effect would be small everywhere
except at the edge of the wetted surface, where its singular term would be
negative at r = c. Near this point the effect of the nonlinear free surface
would modify any singularities occurring in the present linear hydrodynamic
theory. Because the second term introduces a physically unrealistic negative
pressure at the edge of the wetted surface, only the first term of Equation (12)
will be used to predict the pressure profiles. It predicts the essential
features of the experimentally observed profiles Tt . At the instant of impact,
the present incompressible flow theory predicts that the pressure on the shell
is infinite, although the total force is always finite. In practice, of course,
the effects of compressibility and air bubbles will modify these extremely
large pressures. It should also be noted that at some time t, after the
impact, the pressure given by Equation (12) may become negative near the
impact point, presumably because at that time the assumptions of linearity

Tt Experimental water impact studies have been carried out by S. Stubbs at
the NASA Langley Research Center on a 1/4-scale rigid model of the
Apollo Command Module, which has a spherical base. Except at the
singularity, the pressure profiles of Equation (12) compare favorably with
the unpublished data obtained during these impact tests.
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are no longer valid. However, tp always occurs appreciably after the time
of the maximum rigid-body acceleration, when the maximum total forces act
on the shell, and as will be shown later, it is not unreasonable to assume

that the maximum stresses in the shell will have already been attained by
this time.



DYNAMIC RESPONSE OF SHELLS OF REVOLUTION

The determination of the dynamic response of shells of revolution
involves an extension of the work of Budiansky and Radkowski™ developed
for the static analysis of shells. For convenience, the nomenclature used
in Reference 2 will be adopted here unless otherwise noted. Furthermore,
the coordinate system, sign convention, and force descriptions (see
Figure 4) are given in Reference 2, and will not be repeated here indetail.

The equations of motion for a shell of revolution based on Sanders'
theoryl are given by

a [i (PNg) + i(ﬁge) - P'Ne] T owg l:—a— (PMg) + %(ﬁge) - p'Me}

5E 56 9%
(13a)
2
1 _ 89U
+ 7 (9 - ©g) 55 (Meg) + a%pay - ph B TE = 0
a |2 (N) + 2 (pNgg) + p'Neg | +90 | 2= (Mg) + —2-(PMeg) + p'M
96 ‘e’ T 3EPee’ T PTES N RS 6
(13b)
5 BZUG

[ Y 2 -
+ > E{(we_wg) Mge] + a pdg - ph Eo 72 =0

0 — 1 ‘ — —
E[ a~ag (PMg ) + %(Mge) i p-Me] t 5 [%(Me) + 585 (pMgg) + p'Méel
(13c)
2
-ap (ngg +weN9) + aqu - PhEOZT‘g =0

where the nondimensional time and space variables T and § are related to
the respective dimensional quantities t and s by the expressions

T = (E /m) /2 t/a, £=s/a (14)




In these formulas, h is the shell thickness, mg is the mass density, Eg is a
reference Young's modulus, and a is a reference length. In Equation (13)
the effects of transverse shear distortion have been neglected. In addition,
viscous damping terms have been neglected but their inclusion presents no
inherent difficulties (e.g., see Reference 17).

All variables in Equation (13) are now expanded in Fourier series in
the circumferential variable 6 as follows:

r 1 4 (n) 3
Ng tg
Ne t(en)
h® _(n)
Mg =~ rng
M @ | h%  (n)
4 9} :Uoho 24 aa 6 , cos nB
U n=0 | F=o uén)
w an;lo win)
(15)
U %pén)
q q ) Li_ p(n) J
— 9 4 N
Not tgé)
M ® m(n)
g6 6 .
4 u 4 :O'Oho 214 aa g(n) > sin n6
0 n= Eqhg Y6
1
(%0 G

where 0, is a reference stress level, and hy, is a reference thickness. The
Fourier coefficients in the above expansions are functions of § and .
Substitution of the above Fourier series into Equation (13) permits the
uncoupling of the shell equations into separate sets for each Fourier index

(n). For convenience, the superscript (n) will be omitted from the equations
that follow.




By expressing forces and moments in terms of the four variables u,,

ug, w, and mg, and by introducing an auxiliary moment-displacement

equation as was done in Reference 2, the shell equations can now be w¥ritten

in the following form:

! 1

! 1
+ asu + asu

alug ¢ £ + a4ue + agug + a()w'
+aqwt a8mé + agmg - _I;ug = ¢y

aloué + allug + alzué s a13u'6 + al4u9 + a15w' '
+ al6w' t aj7w + a18m€ - Kue =CH

algug' + azoug + a21u('3 't aZZué + a23ue + a24w' '

+ a25w' + azew + a27m€' 'y a28mé + azgmg
-hw=c,

1 [ | '
a30ug + <':L3lug + a32ue + az3w + az4w + azgW

+ a36mg = C
where
h = h/h,

The coefficients a:

1

(16a)

(16b)

(16c)

(16d)

(17)

j are functions of the material and geometric properties of
the shell and of the Fourier index n. The terms c; are functions of the

applied load. The quantities (aj, a3, . . . azg Cl» €2, €3, c4) are given

in Appendix A of Reference 2. Differentiation with respect to £ and 7 is

denoted by primes and dots, respectively. Equation (16) may be written in

the matrix form

Ez '+ Fz'+ Gz=e + Dz

(18)



where

u h 0 0 O
£
ug 0 h 0 O
z = D = _ (19)
W 0 0 h O
m o 0 0 O
| €] | _

and the matrices E, F, G, and e are given by Equations (41) of Reference 2.

The boundary conditions can be written in nondimensional matrix
form as

QHz'+ (A+ QJ)z =1L - Qf (20)

where the matrices H, J, and f are given by Equation (51) of Reference 2.

As explained by Budiansky and Radkowski4, Qand A are prescribed diagonal
matrices, and £ is a prescribed column matrix indicating the type of boundary
condition under consideration’!. For example, if us is known at the boundary,
the first diagonal element of Q is zero, the first diagonal element of A is
unity, and the first element of £ is the prescribed value of ug.

Tt A special modification in the above matrices is necessary when treating
problems where the shell has a closed apex. Procedures for handling
such singular points are discussed in References 18 and 19.
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NUMERICAL ANALYSIS

In this volume the differential equations (18) and (20) will be expressed
in finite-difference form, and a numerical procedure for their solution will
be presented.

Discrete values of the nondimensional space variable £ are denoted
by

gi:iA i=0,1,2, ..., N (21)

where the nondimensional space increment A is defined as
A=s/a (N - 1)

Similarly, discrete values of the nondimensional time variable T are denoted
by

Tj:JE j=-2, -1, 0, 1, 2, . .. (22)

where € is the nondimensional time increment. As will be seen later, the
fictitious times T.] and 7.2 will be necessary in the description of the initial
conditions. The difference formulas used to represent derivatives with

respect to the spatial variable £ (at any time T; and position £;) are

v . 2
24,5 (2i41,5 = 224, ) * 241, 5)/A
(23)
1
2i,5 7 (7341, § - 2i-1,j)/ 24
i=1,2 ..., N-1
1
ZO,j - (Zl’j - ZO:J)/A (24)

2N, j= (2N, - 2ney, 5/

In order to be consistent with Reference 2, simple backward and forward
difference expressions are used above in treating boundary points. More
accurate procedures involving the introduction of fictitious points are
discussed in References 4 and 20. A computer program developed at S&ID,
which yields the numerical results of this paper, takes advantage of such

improved difference expressions at boundary points.
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The Houbolt method features the use of an improved backward difference
technique for the determination of the time derivatives. This method is
based on fitting a third degree polynomial in T through four consecutive
discrete temporal points. The general expression for the second derivative
of z; with respect to time is given by

'zi,j (ZZi’j - 5Zi,j_l + 4Z'1,j-2 - Zi,j-3)/62
(25)

i=1, 2,

It is important to note that the initial increments of calculation (at j =1,2)
in the above expression involve the evaluation of functions at negative values
of time. These fictitious functions zj, -], 2zj, _2 can be determined from the
prescribed initial conditions of the problem z; ¢, zj,0, and Zj, 0. By
utilizing the difference formulas suggested by Houbolt3 to start the process,
the following expressions can be obtained:

2=
zi,-l = ¢ Zi,0+ ZZi,o - 2§ 1

2= —
b¢ i 0 + 6€Zi,0 + 92‘1,0 - 8zi’ 1

(26)

zi, -2
Here, z; g» 2'.1 o and Ei o are column matrices representing the coefficients
of the api)ropri’ate Fourler expansions for the dimensionless initial displace-

ment, velocity, and acceleration conditions, respectively.

By using Equations (23-26) the differential equations (18) and boundary
conditions (20) can be expressed by the set of algebraic equations

AOzl,j + BOZO,_j = gO,j
Aizipy,j t Bizg 5t Cizi-l,j T g, (27)
BNZN,j + CNZN—l,j = &N, j (i=1,2,...,N-1)
Here
Ag =9 Hgy/A

Bg=Mo+ QQ[Jo -(HO/AI)] (28)

g0, = L0,j - oo, ;
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“where the subscript O refers to the end conditions at s = 0, and

BN = Ayt Sy | I UEN/AY)
CN = - (2 Hy/8p) (29)

QN,j -9

8N, j NiN, j

where the subscript N refers to the boundary conditions at s =’s. For
i=1,2, ¢ « o, N-1, the coefficients are given by

B; = - (4E{/A) + 24 (Gj - @;Dj/c?)
(30)
Ci = (2E4/A) - Fy
2AD. .
=24 —— | Bz oy O +M @ Zgt B.E z
8,7 27, " 2 J%1,j-17 T3%, -2 TR, -3 T 9 20T Py 2o
0’1—6’ 0’2: 2: CYJ: r2
61_6’ P2:4’ 6_]_5
5, = 0, 52"-2, 6; = -4
=% mp= 0 my= ol (31)
&1:6, 52_ O, aJ: 0
B]_—Z’ 62" l’ E)J: 0
(=3, 4 )

Assuming that g; j is known, it is evident that the above equations (27)
are of the same form as those treated in the static problem. The method used
to solve these equations is a direct matrix elimination technique (Potters'
method7) which is described in detail in Reference 2. The basic procedure
involves relating zi, j to zj+1,j by expressions of the form

Zi,j - T Pizit1,j * *i,j (i=1,2, ..., N-1) (32)

-13-



where

-1
Pi=| Bi-GiPia1] A
i 1o
*,5 7| Bi - CiPi-1 8i,j - Ci%i-1, j
(1: 2, 3, . ’ N-l) \
(33)
r - 1'1 1
P, =| B,C] B, - A5] B,C] A,
r 7-1
-| B,c7lB, - A BoCT?
"1,3"L 0~1 P17 %o 0C1 81,5 - 80, j

From Equations (32) and the last of Equation (27), the correct value of 2N, j
can be calculated as follows:

-1
ZN,j :[ BN - CNPN-].] [ gN,_] - CNXN-].,_]] (34)

All the remaining z; ; are calculated in the reverse order using Equation (32)
starting from the calculated value ZN, j- The computations involve only
inversions of 4 x 4 matrices. F1nally, 29, j is given by

-1
ZO,j:Cl [gl,j -Alzz’j ‘Blzl,j] (35)

It can be seen that g, 1 in Equation (30), and in turn in the solution
zi,j’ depends on the previous solutions Zi o io10 %4 i.20 %5 3.3 To start the
process at j = 1, gi, 1 is determined from the known 1n1t1aI] conditions, and
the resulting equatlons are solved by Potters' method to give zj 1- By using

.1 and the initial conditions, gi,2 is computed, and the resu1t1ng equations
are solved for z; 2. The cycle is repeated to determine subsequent values
of z3, i

It should be noted that the solutions 25 3 obtained above represent the
shell response for a particular Fourier index n. For the general case of
unsymmetric loads, the complete solution is obtained by performing the
appropriate summation of the Fourier coefficients using the Fourier
expansions described by Equations (15). As pointed out by Johnson and
Greif4, the Houbolt method of solution for the dynamic response reduces to
the static solution as ¢ becomes unbounded.
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The basic numerical method discussed above can easily be extended
to shells with discontinuities and branch conditions by following the parallel
development of Reference 2 for the case of the statics of shells. An analysis
of this type can also consider problems in which the material and geometric
properties of the shell are time-dependent. In such cases, the matrices Aj,

B; and Ci in Equations (28), (29) and (30) must be recomputed at each time
interval.




AGE BLAKIK NOT FILMED.

. PRECEDING P

NUMERICAL RESULTS

The dynamic shell analysis described in this report was programmed
for solution on a digital computer (IBM 7094). The user's manual for the
computer program is described in Volume 5 of this report. Numerical
results are presented for a sample problem simulating the vertical impact
of a typical re-entry vehicle during water impact.

The mathematical model considered is illustrated in Figure 1 with the
shell structure being a shallow spherical shell of radius of curvature
R = 175, 6 ins. and having an opening angle of 19.53°. For convenience, an
axisymmetric problem is considered (i.e., the impact point coincides with
the apex of the shell) and only the Fourier component corresponding to the
index n = 0 is required, The stiffness parameters were selected to be
characteristic of sandwich or layer shell configuration which is typically
used in re-entry shell structures. The extensional stiffness (b) and flexural
stiffness (d) of the shell are both set equal to 3. 33 x 106 1bs. /in., which
corresponds to a sandwich shell having 0. 05 in. steel facings and 1. 95 in.
honeycomb core. It should be recognized that this configuration was selected
for illustrative purposes and that transverse shear distortion effects, although
neglected in this analysis, may be significant for such a sandwich configu-
ration. Other properties of the shell are as follows: Mass per unit surface
area (mgh) = 9.7 x 10-4 1bs sec‘?‘/in. 3, Poisson's ratio v = 0, 33, and modulus
of elasticity E = 29,7 x 10 psi. Referring to Figure 1, the shell is considered
rigidly clamped at its boundary to a heavier mass (simulated re-entry
capsule) so that their combined weight is 10, 000 lbs.

The pressure applied to the shell is given in Figure 3 for a vertical
impact into water at an initial velocity of 30 fps. The pressure loading from
the first term of Equation (12) is seen to contain a singularity at the edge of
the wetted surface. This singularity is integrable, however, so that the
force acting on the shell is finite, and the applied pressure at each station
point is averaged over a complete spatial increment.

The response of the shell due to these applied rigid-body pressures is
illustrated in Figure 5-16. In order to determine the peak response of the
shell, calculations were made up to 15 milliseconds from the time of impact
(see Figures 5-8). This time is well beyond the time of occurrence of the
maximum acceleration of the center of gravity of the vehicle (9.5 ms.). The
response quantities shown in Figure 5-8 represent the displacement W,
meridional bending moment Mg » meridional membrane force Ng, and velocity
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W at the apex of the shell, obtained by using a time increment At of . 05 ms.
Inspection of the results indicates that peak shell response occurs at
approximately 2. 2 ms. after the impact. This peak is experienced
appreciably before the time when the maximum force acts on the shell at
9.5 ms. Three-dimensional plots of the displacement W and the meridional
stresses o¢ at the extreme fiber of the shell are plotted in Figures 9 and 10
versus time and meridional distance on the shell surface measured from the
impact point. Peak shell stresses occur at the apex of the shell at 2.2 ms.
after impact. However, maximum stresses at subsequent times tend to
follow the movement of the edge of the wetted surface. Thus, at later times,
maximum stresses may occur at points other than the apex.

Dotted curves on Figures 5 and 6 represent results obtained when the
pressures are applied statically, i.e., when the inertia effects of the shell
are neglected. These results are sometimes referred to as the static crawl
response, and, as one might expect, the dynamic response oscillates about
the static crawl curves.

In order to ascertain the effect of the shell flexibility on the response,
calculations were also made for the case where the flexural stiffness was
reduced by one-half. It was observed that the peak deflection W was about
40% larger, and the peak stress at the extreme fibers was 35.7% larger.

The peak response occurred at 2. 8 ms, showingthat for a more flexible shell
the peak response is delayed.

As discussed in Reference 4, the accuracy of the Houbolt method varies
with the size of the time increment (¢) used. It has been estimated® that the
time increment ¢ should be smaller than 1/50th of the period of the particular
mode of vibration in order that important output quantities in that mode are
not significantly damped. In Figures 11 and 12 are presented results for
apex displacement and bending moment, obtained by varying the time incre-
ment At between 0.01 ms. and 0.3 ms. The results of Figure 11 reveal that
excellent convergence in the deflection W occurs when a time increment of
0.025 ms. is selected. As might be expected, convergence is slower for
the bending moment M¢ since this quantity is computed numerically from
derivatives of the displacements. Since the results are not significantly
damped for a time increment of 0.05 ms., in the interests of economy, this
time increment was selected for the longer response curves of Figures 5 to
8. No appreciable variation was noticed in the results when the number of
stations (N) was varied between 60 and 120,

Experimental observations show that although peak pressures occur at
the edge of the wetted surface, they are by no means infinite, as predicted
by the present linear hydrodynamic analysis. In order to ascertain the effect
of these infinite pressures on the shell response, a profile whose radius was
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99% of the predicted radius was applied to the shell. Thus, the infinite peak
was excluded from the forcing function. Results of Figure 13, using a time
increment of 0.1 ms,, show an 8. 5% reduction in the peak bending moment.
The implication is that the shell response is sensitive to the pressure peak

at the edge of the wetted surface. Since infinite peaks are not obtained

during experiments, the results of this study would appear to be conservative.

Figure 8 illustrates the normal velocity of the surface of the shell
relative to the center of gravity of the vehicle. These results indicate that
the velocity of the shell achieves values in the order of the impact velocity.
Because the pressures are computed on the basis of the velocity of a rigid
moving surface, one would suspect that structural deformations may have
an appreciable effect on the pressure distributions. A complete discussion
of this hydroelastic interaction is given in Volume 3 of this report.
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CONCLUSION

In conclusion, for the sample problem considered, it has been observed
that during water impact the peak shell responses based on rigid-body pres-
sures occur at a time appreciably before the maximum forces are applied
to the shell surface. In addition, the present linear hydrodynamic theory
gives a conservative result because it predicts an infinite peak pressure at
the edge of the wetted surface. Finally, the high velocity of the shell surface
relative to the center of gravity of the vehicle indicates that the effects of
the hydroelastic interaction between the shell and the water may be of
significance in the determination of the pressures andthe shell responses.
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X P

Figure 1. Model of Re-Entry Vehicle During Impact.
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Figure 4. Shell Element.

-26-




‘xady e M uollda|jsq ‘G aunbig

SANODISITIIW NI 3WLL
g L 9 5

T Vel
- C\J

e —

NOI11331430 TIMYYD JILVLS

LeuwdoN pJdeming T.v

*310N

L]

ISNOdS3Y JIWYNAQ—

(NI M NOI1J3H3d

-27-



-xady 3 3K 3uawoy Bujpudg RUOLPLAA "9 3unbLJ

SANOJ3SITIIW NI JWIL

4

-+ oy

NOI1133H30 IMYYD JILVLS \

JSNOdSIY JIWVNAG —

L
2
[

E'_OI X (NI/SETNI) INJWOW ONIAN3IG TVYNOIQ [dIW

-28-



4

xady 10 3N 90404 Sue.qUIY LRUOLP LI

SANOJIISITIIW NI IWLL
S

3
Ll

o
o
o0
P~
- O

"( a4nbLy

L A0

4

-+

-+~

-r‘-_q

f Yol

=
m
-- =
=
po o
=
>
O_-I
=
- 2
(o]
Lz 2
=
m
-3
- 3
m
B =
ul
l@..
- =
o
lwm
R
>
-0l 3
W




‘M xady [13uS $0 A3190({3p 8 aunbiy

SANOJISITUW NI JWIL

o= OO

- P

<o

01 X (J3S/NI) M ALIDOTIA
-30-







O N

x 102

STRESS 53

Z o 9

TIME, MILLISECONDS 10 i)\




-52UBWAMOU] BWL] SNOL4BA 40y Xddy Je M u0lId3L4aQ LI aunb L4

SANOJISITIIW NI JWILL

0°¢ 02 0

S

(NI} ‘M ‘NOI1LOITH3C

-33-




*SIUSWSUIU] AML] SNOLJRA 404 xady 30 juawol Buipuag |euoLprday

SANOJISITIIW NI IWIL
0°¢ 07¢ 07l
L

*2l aunbLy

r
o
T

£_0I X (NI/SETNI) ° sW ‘INIWOW ONIGN3g TYNOIQI¥IW

-34-




*aunssaad abpj paonpay o}
ang xady 3e judwoy Huipuag [RUOLPLJIW UL UOLIINPIY “£f aunbiy

SANOJISITIIW NI IWIL
0°¢ 07 0l 0

o
T

0°¢-

0°¢-

avo1 a3ona3y

E-OI X (NI/SEIND) ° iW ‘INIWOW ONIAN3Ig TYNOIQI¥IW

avol 1nd

-35-




o

g X 107>

IER1DIONAL
BENDING MOMENT
(N LBS/IN)

L)
-

® ¢ ¥ % o o %

40 DISTANCE FROM

IMPACT POINT,

[

&

[ =4
n £
= o
= c
8 S
oo
(V) o
S R
= 5
= 5

-
wl §
=
—

Figure 14.

INCHES



Gl

14

£l

4

‘xady 1@ 43qL4 433N uQ 70 SSauIg

(SANOD3ISITTIW) 3WIL
L ol 6 8 L 9

"Gl aunbyy

I N

rAL

ml

Vl

0 .30
2
x

14 o
>

8

Al

91

0z

-37-




' ’/',',‘ \\ 58
L N
KN

AN

9
%%
s
s,

......

Q
- 3
u o <

x —

o - o

T
A g £
a




Average Pressure, Psi

400 Rigid-Body Theory, Full Scale
V, = 30 fps
300 -
200 T
100 =+
0 4 $
0 .005 0.01

Time, Seconds

Figure 17. Average Pressure - Full Scale Model

-4]1-



Average Pressure, Psi

100
“ Rigid-Body Theory 1/4 Scale

S <+
S50
254
15.3 FPS
7.62 FPS
0 0.01

Time, Seconds

Figure 18. Average Pressure-Quarter Scale Model

_42-




DISPLACEMENT, W (INCHES)

S S I

-1.0}—
-0.9 {—
~-0.8 |—
o7l DYNAMIC RESPONSE, FLEXIBLE SHELL
/DYNAMIC RESPONSE, STIFF SHELL
-0.6 — .
0.5 p—
0.4 —
\\\
~
-0.3 }—
N
~
-0.2 — -~
-0.1
STATIC CRAWL DEFLECTION (STIFF SHELL)
0
.1
+0,2 |—
R A I S S N O T I A I I
0 1 2 3 4 5 é 7 8 9 10 it 12 13 14 15
TIME (MILLISECONDS)
Figure 19. Displacement W at Apex Illustrating Effect of Shell Flexibility

-43-




Gl

“A3L1LqLxaLd LL3YS
40 $199343 Burjeaasny|] xady 3e 3 3uawop Hurpudg Leuoipruaay °0Z 4nbi4

(SANODISNTIW) IWIL
14 €l ¢l 11 ot 6 8 L 9 g

n1 1 1 T T 17 17 1T 1T T [ [ |

(113HS 4311S) NOI123143d TMWY¥D DILVIS N

(1713HS 3121X314) ISNOCSII DIWVNAQ

(173HS 44115) ISNOJSI¥ DIWVNAQ

[30]
]

ki

n
[

~0
]

N
]

(E_Ol X N1/587) INIWOW ONIAN38 TYNOIQI¥IW

-44 -



10.

11.

12,

REFERENCES

Sanders, J.L., Jr., "An Improved First-Approximation Theory for
Thin Shells, '' NASA Rept. 24 (June 1959).

Budiansky, B., and Radkowski, P.P., "Numerical Analysis of
Unsymmetric Bending of Shells of Revolution, ' AIAA J. 1, 1833-1842
(1963).

Houbolt, J.C., "A Recurrence Matrix Solution for the Dynamic Response
of Elastic Aircraft," J. Aeronaut. Sci. 17, 540-550 (1950).

Johnson, D.E., and Greif, R., '"Dynamic Response of a Cylindrical
Shell: Two Numerical Methods, ' AIAA J. 4, 486-494 (1966).

Johnson, D.E., "A Proof of the Stability of the Houbolt Method, "
AIAA J. 4, 1450-1451 (1966).

Levy, S., and Kroll, W.D., "Errors Introduced by Finite Space and
Time Increments in Dynamic Response Computations, ' Proc. 1lst U.S.
Nat'l Congress Appl. Mech. (A.S.M.E., New York, 1951), Vol. 1.

Potters, M. L., "A Matrix Method for the Solution of Second Order
Difference Equations in Two Variables, ' Mathematich Centrum,
Amsterdam, The Netherlands, Report MR 19, 1955,

Chu, C.H., and Abramson, H.N., "Hydrodynamic Theories of Ship
Slamming —Review and Extension, ' J. Ship Res. 4, 9-21 (1961).

Szebehely, V.G., and Ochi, M. K., "Hydrodynamic Impact and Water
Entry, " Applied Mechanics Surveys (Spartan Books, Washington, D.C.,
1966), Eds: H.N. Abramson, H. Liebowitz, J.M. Crowley, and

S. Jahasz, PR- 951-957.

Chuang, S.L., "Experiments on Flat-Bottom Slamming, " J. Ship Res.
9, 10-17 (1966).

Von Kirman, T., '"The Impact on Seaplane Floats During Landing, "
NACA TN 321 (1929).

Wagner, H., "ﬁber Stoss-und Gleitvorgange an der Oberflache von
Flussigkieten, " ZAMM 12, 193-215 (1933).

-45.-



13,

14,

15,

16,

17,

18,

19.

20.

Shiffman, M., and Spencer, D.C., "The Force of Impact on a Cone
Striking a Water Surface, " Comm. Pure and Appl. Math. 4, 379-417
(1951).

Shiffman, M., and Spencer, D.C,, "The Flow of an Ideal Incompressible
Fluid about a Lens, " Quart. Appl. Math. 5, 270-388 (1947).

Korkegi, R.H., "Pressure Distribution on a Sphere Entering Water
Based on Various Linearized-Theoretic Models, ' NOTS Tech. Memo,
808-40 (1950),

Lamb, "Hydrodynamics'' (Dover Publications, Inc., New York, 1945),
6th ed.

Cappelli, A.P., "A Numerical Procedure for the Dynamic Analysis
of Shells of Revolution, " Structures Technical Report 143, Space and
Information Systems Div., North American Aviation, Inc.,

January 1966.

Greenbaum, G., "Comments on Numerical Analysis of Unsymmetrical
Bending of Shells of Revolution, ' AIAA J. 2, 590-591 (1964).

Budiansky, B., and Radkowski, P.P., "Reply by Authors to
G. A. Greenbaum, '" AIAA J. 2, 595 (1964).

Cappelli, A.P. and Verette, R.F., "An Improved Numerical
Procedure for the Solution of Shell Problems, " Structures Technical
Report 141, Space and Information Systems Div., North American
Aviation, Inc., Jan. 1966,

-46-



APPENDIX A - AUXILIARY RESULTS

In this Appendix certain auxiliary results will be presented which are
complementary to the foregoing discussion (but not essential to its
development).

In Figure 14 is shown the meridional bending moment M¢ as a function
of time and radial distance from the impact point. It is maximum at the
apex at t = 2,2 ms.

Figure 15 shows the stress (?g at the outer fiber of the shell apex. It
is maximum at t = 2.2 ms.

Figure 16 is a three dimensional schematic of the rigid-body pressures.
There are two nearly identical figures here. They are the left and right
views forming a stereographic pair. If an appropriate viewer is used, the
pairs will fuse to yield a vivid 3-dimensional image of the pressures. We
note from this drawing that the pressures decrease monotonically with time
as soon as the maximum has been reached. The maximum peaks occur at
the edge of the wetted surface,

Figure 17 shows the average pressure acting on the vehicle for an
initial impact velocity of 30 ft/sec.

Figure 18 shows the average pressures acting on a 1/4 scale model
(weight 165 1bs, radius 44. 1 inches) as it impacts at 7. 62 and 15. 3 ft/sec. \

In Figures 19 and 20 are shown the detailed effects of varying the
shell flexibility. The discussion in the main portion of this volume should
be referred to for further comments.
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